Educator Archives - ACS Axial | ACS Publications
Search
Close

Greener Methods for Cleaner Water

Water, water everywhere…but is it clean enough to drink? For more than one-third of the world’s population, the answer is no.1 Access to clean drinking water is currently one of the most challenging global issues, exacerbated by climate change, increasing water scarcity, population growth, demographic changes, and continued urbanization. But scientists are now harnessing the power of the sun to effectively and sustainably turn salty ocean water into a clean, drinkable resource. 

Advances in Solar-Powered Desalination Technology

A Paper-Based Answer to Salt Accumulation

While the majority of the earth’s surface is covered by water, more than 97% is found in the oceans and cannot be consumed due to its high salinity. But chemists have been working to address the global water crisis by developing more efficient and environmentally sustainable seawater desalination techniques.

Solar-powered desalination is steadily becoming a leading force in battling global water scarcity, and there is a strong drive to advance solar desalination methods for more widespread applications in sustainable clean water production. Most traditional solar evaporation systems operate using thermal conduction, but the biggest challenge for these evaporators is excessive salt accumulation on the absorption layer, which hinders evaporation efficiency and makes the devices difficult to clean and maintain.

However, research recently published in ACS Applied Materials & Interfaces demonstrates a novel solution in the form of a paper-based thermal radiation-enabled evaporation system (TREES).2 This system uses a contactless configuration consisting of a vertical evaporation wall made of filter paper, which surrounds a thermally insulated bottom solar absorber constructed from surface-inked wood and polystyrene foam.

The evaporation wall can efficiently capture thermal energy from the solar absorber while also gaining energy from the warmer environment, enhancing the evaporation process. The wall is also unique in its ability to efficiently collect the salt on its exterior and, through energy down-conversion, enable water to serve as its own absorber and create a dynamic evaporation front from the accumulated salt layer. Furthermore, since the TREES system is contactless, the salt layer does not accumulate on the bottom absorber surface.

After testing the TREES system outdoors for eight consecutive days, the researchers reported that it can enhance evaporation by more than 1000% compared to traditional systems. By overcoming the salt accumulation challenge and improving the evaporation process, TREES exhibits tremendous potential as a driver of next-generation desalination technology. Watch a video of TREES in action.

Doing Double Duty with Hydrogel

Another desalination approach published in ACS ES&T Water uses a hydrogel platform to produce fresh water from both the ocean and the atmosphere.3 Salt accumulation presents a challenge here as well—hydrogel-based solar steam generators currently used for seawater desalination are easily clogged and dirtied by excess salt deposits.

Despite their obstructive nature, researchers observed that these salts could be quite useful for absorbing water from the atmosphere, and they worked to develop a versatile solar-thermal hydrogel (TA-Fe@PAM) that could integrate oceanic desalination and atmospheric water collection within a singular device.

The team constructed the TA-Fe@PAM hydrogel by embedding a tannin-iron (TA-Fe) photothermal complex into a polyacrylamide (PAM) hydrogel system. The hydrogel’s porous nature allowed for efficient photothermal conversion and water transport while effectively trapping large amounts of deliquescent salts during rapid solar desalination. The hydrogel containing the incorporated salts (DS-TA-Fe@PAM) was then dried and tested for atmospheric water collection performance. The DS-TA-Fe@PAM hydrogel was able to successfully capture atmospheric water vapor and then release almost all of the water it had collected.

Finally, the team tested DS-TA-Fe@PAM within a device made from cheap, easy-to-assemble household materials, and it again demonstrated efficient water harvesting and release. This is especially promising for use in developing countries and low-resource settings where it is difficult to regularly access clean water.

Taken together, these new findings provide novel insights into the design of next-generation salt-harvesting solar evaporators and take a step further to advance their applications in sustainable desalination.

Explore Related Research on Desalination from ACS Journals

  1. Zhang, C. et al. Dual-Layer Multichannel Hydrogel Evaporator with High Salt Resistance and a Hemispherical Structure toward Water Desalination and Purification. ACS Appl. Mater. Interfaces 2022, 14, 22, 26303–26313
  2. Aleid, S. et al. Salting-in Effect of Zwitterionic Polymer Hydrogel Facilitates Atmospheric Water Harvesting. ACS Materials Lett. 2022, 4, 3, 511–520
  3. Pan, Y. et al. Simple Design of a Porous Solar Evaporator for Salt-Free Desalination and Rapid Evaporation. Sci. Technol. 2022, 56, 16, 11818–11826
  4. Chu, A. et al. Sustainable Self-Cleaning Evaporators for Highly Efficient Solar Desalination Using a Highly Elastic Sponge-like Hydrogel. ACS Appl. Mater. Interfaces 2022, 14, 31, 36116–36131
  5. Wilson, H. et al. Highly Efficient and Salt-Rejecting Poly(vinyl alcohol) Hydrogels with Excellent Mechanical Strength for Solar Desalination. ACS Appl. Mater. Interfaces 2022, 14, 42, 47800–47809

References

  1. Patel, P. Improving the efficiency of solar desalination. C&EN Global Enterprise 2019, 97, 26, 8-8
  2. Bian, Y. et al. Enhanced Contactless Salt-Collecting Solar Desalination. ACS Appl. Mater. Interfaces 2022, 14, 29, 34151–34158
  3. Li, X. et al. Multipurpose Solar-Thermal Hydrogel Platform for Desalination of Seawater and Subsequent Collection of Atmospheric Water. ACS EST Water 2022, Article ASAP

Food Packaging is (Naturally) Getting Smarter

Food packaging and waste are two key issues in the race to address climate change—and they are often one and the same. But several recent studies present innovative solutions for intelligent, sustainable food packaging alternatives to petroleum-based plastics and synthetic dyes.

The food we eat has a dramatic impact on the planet. Much attention is given to the ecological consequences of mass farming, agriculture, and food production processes. But part of the challenge stems from two associated problems: increasing levels of food waste, and the ubiquitous use of plastics in food packaging. In fact, food packaging is the third largest global industry and the single-largest contributor to solid waste.1-3

Since most food packaging is either disposed of improperly or cannot be recycled at all, the damage caused by plastic debris and microplastics is also an important part of the conversation.2 Yet packaging is an essential need for many foods, preventing contamination and extending shelf life. This role in reducing food waste is crucial, since it is estimated that 17% of total global food production is wasted.3

Some argue that removing packaging altogether would result in a heavier dependence on refrigeration, which could drive the problem in a different way by further increasing energy usage and greenhouse gas emissions. So how can we address this issue without compromising hygiene and food quality?

Progress Toward Biodegradable Active Packaging

One proposed solution is through active packaging technology, which—when triggered by changes either to the product itself or to outside environmental conditions—works to release active compounds or isolate gaseous emissions within the package in order to extend freshness.1 Although the concept of active packaging has existed since the early 1900s, significant technological innovations have only begun to gain traction in recent years.

Lately, research in the field has been focusing on exclusively using biodegradable and biocompatible materials for active packaging technology. Options for natural antimicrobial biopolymers in active release packaging include corn starch, collagen, cellulose, and chitosan.1,4 Unfortunately, these biopolymers often have weaker material properties—such as mechanical strength and thermal stability—compared to conventional plastics, which must be improved upon before bio-based active packaging can be a safe, widely accepted solution.

Natural active agents, such as polyphenols from tea or essential oils from clove, marjoram, or thyme, may also be used as antimicrobials.1 Work is ongoing to ensure that the release of these active compounds from packaging can be strictly controlled in order to adhere to food safety regulations—and to ensure they do not affect the smell or taste of the food. Here, the food industry may borrow from medicine, where controlled-release drugs have become the norm in many therapeutic areas. This could mean it is possible to build a controlled-release food packaging environment where natural antimicrobials are induced by external stimuli such as heat or pH. And speaking of pH…

Giving New Meaning to Food Coloring

Another review in ACS Food Science & Technology also highlights more natural approaches to intelligent food packaging, focusing specifically on developments in pH-responsive color indicator technology.5 Color indicators on food packages have gained significant popularity in recent years, making it easier than ever for consumers to quickly assess the pH levels and freshness of foods with shorter shelf lives such as meats, dairy products, and seafood. But almost all current commercial pH indicators use synthetic dyes that could pose great health and safety risks if leaked from the packaging into the food itself.

As a solution, scientists have begun developing new color indicators made from pH-responsive natural colorants such as anthocyanins (found in produce and flowers); curcumin6 (derived from turmeric); alizarin and shikonin (root-derived); and betalains (found in beets). So far, indicators using these natural colorants have performed successfully on packaging for various animal-based food products. Despite their incredible potential, more research and testing must be conducted to further strengthen properties such as pH sensitivity and microbial marker detection before these natural colorant-based indicators make it to your local grocery store.

Many countries show signs of a desire to move towards reusable, recyclable, or compostable packaging, and the development of biodegradable packaging that can compete with plastics on a commercial level is fundamental to this revolution. To date, there have been few scalable successes in the field. But with the problems underpinning the need for sustainable and smart food packaging only growing, it is surely just a matter of time before the chemistry happening in the lab becomes mainstream.

Explore More Articles on Sustainable Food Packaging from ACS Publications

  1. Zare, M. et al. Emerging Trends for ZnO Nanoparticles and Their Applications in Food Packaging. ACS Food Sci. Technol. 2022, 2, 5, 763–781
  2. Li, F. et al. A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS Appl. Mater. Interfaces 2021, 13, 44, 52998–53008
  3. Patel, P. The time is now for edible packaging. Chemical & Engineering News 2020, 98, 4.

References

  1. Westlake, J. R. et al. Biodegradable Active Packaging with Controlled Release: Principles, Progress, and Prospects. ACS Food Sci. Technol. 2022, 2, 8, 1166–1183
  2. Zhao, X. Y. et al. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 8, 4712–4732
  3. UNEP Food Waste Index Report 2021; UNEP, 2021.
  4. Wang, H. et al. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 2, 395–413
  5. Priyadarshi, R. et al. Recent Advances in Intelligent Food Packaging Applications Using Natural Food Colorants. ACS Food Sci. Technol. 2021, 1, 2, 124–138
  6. Cvek, M. et al. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14, 12, 14654–14667

10 Chemistry Articles Everyone Was Reading in October 2022

There are many ways to measure an article’s success after it is published. One helpful method of evaluating a scientific publication’s reach and influence is by looking at how many times it has been read. Below, we have gathered a selection of recently published chemistry articles that were among the most read in October 2022 across all ACS Publications journals.*  

These articles cover a variety of topics, including Nobel-winning click chemistry, plastic degradation rates, PFAS, and more. We hope you find this content informative and useful. If you are interested in publishing in an ACS journal, click below to learn more about how your research can further our commitment to being the “Most Trusted. Most Cited. Most Read.” 

Learn More About Publishing with ACS

 

Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources

Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources
Derrick Salvatore, Kira Mok, Kimberly K. Garrett, Grace Poudrier, Phil Brown, Linda S. Birnbaum, Gretta Goldenman, Mark F. Miller, Sharyle Patton, Maddy Poehlein, Julia Varshavsky, and Alissa Cordner 
DOI: 10.1021/acs.estlett.2c00502 

 

On the Topic of Substrate Scope 

On the Topic of Substrate Scope 
Marisa C. Kozlowski 
DOI: 10.1021/acs.orglett.2c03246 

 

Introduction: Click Chemistry

Introduction: Click Chemistry 
Neal K. Devaraj and M. G. Finn 
DOI: 10.1021/acs.chemrev.1c00469 

 

Fewer Sandwich Papers, Please

Fewer Sandwich Papers, Please 
Song Jin 
DOI: 10.1021/acsenergylett.2c02197 

 

Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode

Improved Stability of Inverted and Flexible Perovskite Solar Cells with Carbon Electrode 
Vivek Babu, Rosinda Fuentes Pineda, Taimoor Ahmad, Agustin O. Alvarez, Luigi Angelo Castriotta, Aldo Di Carlo, Francisco Fabregat-Santiago, and Konrad Wojciechowski 
DOI: 10.1021/acsaem.0c00702 

 

Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles

Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles 
Shibabrata Basak, Vadim Migunov, Amir H. Tavabi, Chandramohan George, Qing Lee, Paolo Rosi, Violetta Arszelewska, Swapna Ganapathy, Ashwin Vijay, Frans Ooms, Roland Schierholz, Hermann Tempel, Hans Kungl, Joachim Mayer, Rafal E. Dunin-Borkowski, Rüdiger-A. Eichel, Marnix Wagemaker, and Erik M. Kelder 
DOI: 10.1021/acsaem.0c00543 

 

Composition, Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California

Composition, Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California 
Eric D. Lebel, Drew R. Michanowicz, Kelsey R. Bilsback, Lee Ann L. Hill, Jackson S. W. Goldman, Jeremy K. Domen, Jessie M. Jaeger, Angélica Ruiz, and Seth B. C. Shonkoff 
DOI: 10.1021/acs.est.2c02581 

 

Degradation Rates of Plastics in the Environment

Degradation Rates of Plastics in the Environment 
Ali Chamas, Hyunjin Moon, Jiajia Zheng, Yang Qiu, Tarnuma Tabassum, Jun Hee Jang, Mahdi Abu-Omar, Susannah L. Scott, and Sangwon Suh 
DOI: 10.1021/acssuschemeng.9b06635 

 

Unified Access to Pyrimidines and Quinazolines Enabled by N–N Cleaving Carbon Atom Insertion

Unified Access to Pyrimidines and Quinazolines Enabled by N–N Cleaving Carbon Atom Insertion 
Ethan E. Hyland, Patrick Q. Kelly, Alexander M. McKillop, Balu D. Dherange, and Mark D. Levin  
DOI: 10.1021/jacs.2c09616 

 

Total Synthesis of Yuzurine-type Alkaloid Daphgraciline

Total Synthesis of Yuzurine-type Alkaloid Daphgraciline 
Li-Xuan Li, Long Min, Tian-Bing Yao, Shu-Xiao Ji, Chuang Qiao, Pei-Lin Tian, Jianwei Sun, and Chuang-Chuang Li 
DOI: 10.1021/jacs.2c09548


*This list was not chosen by the journals’ editors and should not be taken as a “best of” list, but as another perspective on where the chemistry community is recently allocating their attention.
 

Update on ACS Publications’ Name Change Policy: Two Years Later

ACS Publications recognizes and respects that authors may change their names for many reasons during their academic careers including—but not limited to—gender identity, marriage, divorce, or religious conversion. As part of ACS Publications’ commitment to reducing barriers to inclusion, equity, and professional mobility, we implemented an inclusive name change policy in October 2020, offering a more inclusive and author-centric path to updating one’s name on prior publications. Over the last two years, we have updated approximately 400 published articles. In doing so, nearly 100 researchers have rightfully claimed ownership of their academic work under their lived names.

Though this policy benefits anyone who changes their name, we were originally motivated to update our policy in response to a call from the transgender scientific community. For many researchers, particularly those from the transgender community, name changes can be a sensitive issue. Submitting change requests can be taxing—emotionally and administratively—especially for researchers who have published in multiple journals or across publishers whose policies and procedures may vary.

To help address this burden, in 2021 ACS Publications announced a partnership with the U.S. National Laboratories as they implemented their name change policy. The partnership with all seventeen U.S. National Laboratories enables researchers to ask the National Laboratories to pursue name changes on their behalf directly with participating publishers. This streamlined process reduces the emotional toll often associated with name changes and the administrative burden involved in requesting name changes at multiple publishers or journals. Over the last year, we have been diligently working to honor this partnership. We have also been advancing other planned improvements to our policy and processes.

We’re pleased to share that we can now accept name change requests submitted by an approved institutional representative on behalf of an author. Through a revised request form, institutional representatives can submit all the necessary information for ACS to process the change. Authors must still update their ACS Paragon Plus profile and ORCiD, and they must be copied on the request and made available for questions if needed. More information for interested authors and institutional representatives can be found on our policy page and FAQs.

We continue to encourage authors to submit requests on their own behalf, if their institution does not have a name change policy or they do not want to involve an institutional representative. For authors, the revised form allows them to provide more relevant information from the start of the request and aims to minimize the burden on the author later in the process. ACS staff might still contact the author throughout the process as questions arise. 

Through efforts like ACS’ name change policy, ACS Publications is committed to promoting diversity, equity, inclusion, and respect (DEIR), identifying and dismantling barriers to success, and creating a welcoming and supportive environment so that all ACS contributors, members, employees, and volunteers can thrive. We continue to actively listen to the community on these issues and welcome your feedback on how we are doing. Please complete our Diversity Feedback form to share your comments.

Visit the ACS Publications Name Change Policy Page

Learn About Our Commitment to Advancing DEIR

Share Your Feedback With Us!

Call for Papers: Electrified Membranes for Environmental Applications

Environmental pollution and the energy crisis have created an urgent demand to develop high-efficiency, cost-effective and sustainable technologies for water purification.

By integrating the advantages of electrochemistry and membrane separation, the electrified membrane has risen as a new-generation technology, as reflected by a rapid growth in the number of peer-reviewed publications in the last five years. There have been significant advances in the design of various electroactive materials, functionalization strategies, and reactor configurations. Both an understanding of the working mechanism and environmental applications are of essential importance to accelerate research and development, to explain the fundamental mechanisms and to address the practical challenges regarding widespread industrial applications.

This new Special Issue from ACS ES&T Engineering is seeking original and high-quality research and review articles that explore the remediation of environmental hazardous materials using electrified membranes. Both fundamental and applied research papers covering multidisciplinary topics will be considered.

The scope of the Special Issue includes, but is not limited to, the following topics:

  • Electrified membranes for the decontamination of heavy metal ions.
  • Electrified membranes for the inactivation of waterborne pathogens.
  • Electrified membranes for water and wastewater treatment.
  • Full-scale engineering applications of electrified membranes for water treatment.
  • Nanotechnology strengthened electrified membranes for water purification.
  • Electrified membranes for the treatment of emerging contaminants.
  • Advanced electroactive materials and functionalization strategies for water treatment.

Explore Research on Electrified Membranes in ACS Journals

Editors

Guest Editors:

  • Yanbiao Liu, Donghua University, China
  • Zhiwei Wang, Tongji University, China
  • Xing Xie, Georgia Institute of Technology, United States
  • Shijie You, Harbin Institute of Technology, China

Associate Editor:

  • Jaehong Kim, Yale University, United States

Author Instructions

To submit your manuscript, please visit the ACS ES&T Engineering website. Please follow the normal procedures for manuscript submission and when in the ACS Paragon Plus submission site, select the Special Issue of “Electrified Membranes for Environmental Applications.” All manuscripts will undergo rigorous peer review. For additional submission instructions, please see the ACS ES&T Engineering Author Guidelines.

The deadline for submissions is May 2, 2023.

Author Guidelines

Submit Your Manuscript

 

Semiconductors: The Building Blocks of Modern Technology

The global semiconductor industry is on the rise, with the potential to grow into a trillion-dollar industry by the end of the decade. In tandem, scientists continue to advance the field with quality research in semiconductor technology and applications. Here, we explore recent advances in semiconductor research across ACS Publications journals.

Tiny Powerhouses

Semiconductors are a class of crystalline solids whose electrical conductivity exists between that of a conductor, such as aluminum or copper, and an insulator, such as ceramic or glass—hence their “semi” conductive nature.1 These diverse substances, including two-dimensional (2D) materials, optoelectronics, and optical devices, have become the fundamental components of modern electronic technology.

Progress Toward Next-Generation Devices

In addition to silicon, novel materials such as graphene also have a high potential for applications as semiconductors in electronic devices. However, their high contact resistance makes them susceptible to overheating, and this limits their practical applications. Some scientists have begun investigating various options to lower the contact resistance, making 2D semiconductors a promising candidate for broader use in electronics.2

Some 2D semiconductor materials have recently been shown to exhibit magnetic properties, which could make them extremely useful for next-generation spintronic devices and information technology, such as logic circuits that utilize the spin interactions of electrons. By applying magnetic and other enhanced properties of certain semiconductors, spintronic devices could reduce energy consumption while increasing processing capabilities, making them a viable alternative to traditional electronics.3 To enhance these magnetic properties, one study explores doping suitable magnetic materials into host semiconductors at room temperature.3 Others are examining strategies to develop more high-temperature 2D magnetic semiconductors that could also one day be widely used in spintronics applications.4

The role of semiconductors in optoelectronic technology and applications has grown significantly in recent years. Semiconductor nanocrystals have displayed great potential in optoelectronics applications such as light-emitting diodes and lasers5, and organic–inorganic hybrid semiconductors such as organometal halide perovskites are also encouraging candidates for next-generation optoelectronics.6

A (Machine) Learning Process

Machine Learning (ML) is a growing field that has transformed research processes across various industries, including semiconductor production. For example, developing new semiconductors with high thermal conductivity may aid in heat management and energy conservation for device cooling—and ML algorithms can rapidly and accurately generate screenings to predict different semiconductor material properties, evaluate their potential applications, and create simulation models for extreme conditions.7

A recent study in ACS Applied Nano Materials describes a method for deep-learning-based microscopic imagery deblurring (MID), which helps to more accurately identify 2D semiconductors and may be useful in the industrial manufacturing process.8

Powering Renewable Energy Sources

Outside of the electronics industry, another important area of interest is the powerful role of semiconductors in sustainable energy generation. Researchers recently reported on a new type of semiconductor alloy “nanoflower” with great potential for use in water splitting and hydrogen production.9

Harnessing the power of the sun is no simple task, but semiconductors are also proving themselves essential for the future of solar energy conversion. The growing demand for effective yet inexpensive photovoltaic materials has prompted some to begin exploring alternative semiconductor options—such as copper sulfide (CuS), which could have great success in improving the stability and photoconversion efficiency in perovskite solar cells.10

Another study describes a strategy for improving perovskite solar cell performance by introducing 2D material films or semiconducting additives to better balance the charge transport, or the flow of electric current through the solar cell.11

Semiconductors are everywhere in our daily lives, and their impact continues to grow across a multitude of industries and applications. From driving the performance of next-generation electronics to improving technologies for a more sustainable future, these tiny powerhouses are vital for keeping the modern world running.

Further Reading: Recent Semiconductor Research from ACS Journals

  1. Huang, N. et al. Photosynthesis of Hydrogen and Its Synchronous Application in a Hydrogen Fuel Cell: A Comprehensive Experiment in the Undergraduate Teaching Laboratory. J. Chem. Educ. 2022, 99, 9, 3283–3288
  2. Protti, S. and Fagnoni, M. Recent Advances in Light-Induced Selenylation. ACS Org. Inorg. Au 2022, Article ASAP
  3. Park, H. et al. Reduction of the Error in the Electrical Characterization of Organic Field-Effect Transistors Based on Donor–Acceptor Polymer Semiconductors. ACS Appl. Electron. Mater. 2022, 4, 9, 4677–4682
  4. Abdelraouf, O.A.M. et al. Recent Advances in Tunable Metasurfaces: Materials, Design, and Applications. ACS Nano 2022, 16, 9, 13339–13369
  5. Bhall, N. et al. Endorsing a Hidden Plasmonic Mode for Enhancement of LSPR Sensing Performance in Evolved Metal–insulator Geometry Using an Unsupervised Machine Learning Algorithm. ACS Phys. Chem Au 2022, Article ASAP
  6. Shiraishi, Y. et al. Solar-Driven Generation of Hydrogen Peroxide on Phenol–Resorcinol–Formaldehyde Resin Photocatalysts. ACS Mater. Au 2022, 2, 6, 709–718

References

  1. Encyclopedia Britannica. https://www.britannica.com/science/semiconductor
  2. Wu, Z. et al. Lowering Contact Resistances of Two-Dimensional Semiconductors by Memristive Forming. Nano Lett. 2022, 22, 17, 7094–7103
  3. Kanwal, S. et al. Room-Temperature Ferromagnetism in Cu/Co Co-Doped ZnO Nanoparticles Prepared by the Co-Precipitation Method: For Spintronics Applications. ACS Omega 2022, 7, 36, 32184–32193
  4. Sun, H. et al. High-Temperature Ferromagnetism in a Two-Dimensional Semiconductor with a Rectangular Spin Lattice. J. Phys. Chem. C 2022, 126, 37, 16034–16041
  5. Brumberg, A. et al. Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets. Nano Lett. 2022, 22, 17, 6997–7004
  6. Li, Y. et al. Design of Organic–Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications. J. Am. Chem. Soc. 2022, 144, 36, 16656–16666
  7. Li, M. et al. Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Lett. 2022, 7, 10, 3204–3226
  8. Dong, X. et al. Microscopic Image Deblurring by a Generative Adversarial Network for 2D Nanomaterials: Implications for Wafer-Scale Semiconductor Characterization. ACS Appl. Nano Mater. 2022, 5, 9, 12855–12864
  9. Aher, R. et al. Synthesis, Structural and Optical Properties of ZrBi2Se6 Nanoflowers: A Next-Generation Semiconductor Alloy Material for Optoelectronic Applications. ACS Omega 2022, 7, 36, 31877–31887
  10. Shaikh, G.Y. et al. Structural, Optical, Photoelectrochemical, and Electronic Properties of the Photocathode CuS and the Efficient CuS/CdS Heterojunction. ACS Omega 2022, 7, 34, 30233–30240
  11. Mei, Y. et al. Synergistic Effects of Bipolar Additives on Grain Boundary-Mediated Charge Transport for Efficient Carbon-Based Inorganic Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 34, 38963–38971

Sparking Interest in New Firework Colors

Sparklers are a favorite for holidays and celebratory events across the world, providing dramatic and eye-catching bursts of light. While their flames can span the rainbow, the actual sparks that fly and branch out are traditionally limited to dark red, gold, or white light. But chemists are now uncovering new ways to expand the pyrotechnic color palette using rare-earth metals.

Read the Full Paper

Sparks are tiny pieces of materials that, when heated to a certain temperature, produce visible light. Long-flying sparks formed from hot, incandescent metal particles are essential components of sparklers, fireworks, and other pyrotechnic spectacles—however, these traditional metallic sparks may leave something to be desired due to their limited color range. This is because the color of the spark is controlled exclusively by the temperature of the metal heated by surface combustion, a phenomenon known as black or gray body radiation.

In recent decades, studies have demonstrated the potential for rare-earth metals to be promising agents for more colorful pyrotechnic displays and spark variety due to their low boiling points and ability to burn in the vapor phase. Unfortunately, the metals are consumed very quickly during vapor-phase combustion, resulting in only brief flashes of light rather than the desired effect of long, branching sparks.

But now, a recent study published in ACS Omega reports that rare-earth metals in alloy powder form can produce flashes that shift from gold to green while maintaining continuous branching and sparking effects. This study is thought to be the first investigation into how such alloys expand spark colors beyond the black body limit, as well as their impact on branching behavior.

Overall, the researchers studied 11 commercial and synthesized alloys plus six rare-earth elements. They were able to achieve deep green spark segments based on eutectic ytterbium–zinc (Yb–Zn) and ytterbium–copper (Yb–Cu) powders. Once ignited, Yb–Cu burst into a shower of both gold and green sparks. In contrast to pure Yb, the Yb–Cu sparks successfully traveled outside of the flame, reaching significant lengths of 3–6 cm. The resulting effects appeared as a mixture of surface combustion (gold), vapor combustion (green flashes), and color-changing sparks with deep green and golden stages, repeating several times over.

In addition to color, the researchers demonstrated that rare-earth metal alloys could influence the branching behavior of sparks. Among the various candidates that were analyzed, the neodymium-iron-boron alloy Nd2Fe14B proved to be the most ideal and practical due to its stable phase and ability to produce bright, continuous branching effects. 

The authors conclude that binary metal alloys could one day play a vital role in enhancing the color variety and spark behavior of handheld sparklers and other pyrotechnic devices. However, further research and intensive safety testing must be conducted to ensure commercial viability.

So, as you stand under your next fireworks show or trace shapes in the cold night air with a sparkler, spare a thought for the chemists working to light up the skies and add color to our celebrations.  

To see the research in action, watch the video below created by the ACS Science Communications team:

Read the Original Article

Read the Full Press Release

Learn more about the chemistry of pyrotechnics in ACS journals:

  1. Ritchie, T. et al. Evolution of Medieval Gunpowder: Thermodynamic and Combustion Analysis. ACS Omega 2021, 6, 35, 22848–22856
  2. Dong, W. et al. Multidimensional Energetic Coordination Polymers as Flame Colorants: Intriguing Architecture and Excellent Performance. Cryst. Growth Des. 2022, 22, 9, 5449–5458
  3. Cao, W. et al. Access to Green Pyrotechnic Compositions via Constructing Coordination Polymers: A New Approach to the Application of 3,4-Dinitropyrazole. ACS Appl. Mater. Interfaces 2022, 14, 28, 32084–32095
  4. Zeman, O. Diketopyrrolopyrrole─A Greener Alternative for Pyrotechnic Smoke Compositions. ACS Sustainable Chem. Eng. 2022, 10, 14, 4788–4791
  5. Fan, S. et al. Are Environmentally Friendly Fireworks Really “Green” for Air Quality? A Study from the 2019 National Day Fireworks Display in Shenzhen. Environ. Sci. Technol. 2021, 55, 6, 3520–3529

Call for Papers: Hot Electrons in Catalysis

The Journal of Physical Chemistry C will publish a Virtual Special Issue on “Hot Electrons in Catalysis.”

The Virtual Special Issue is led by Guest Editors Prof. Reinhard Maurer (University of Warwick) and Prof. Prashant Jain (University of Illinois Urbana-Champaign). Together they encourage researchers to submit their new and unpublished work by March 31, 2023.

Learn More About How to Submit

Research areas of particular interest include:

  • Understanding and controlling hot carrier production by optical excitation and other methods
  • Energetics and dynamics of hot electron generation, relaxation, and dissipation through catalytic reactions
  • Mechanisms of catalysis and chemical reactions involving hot electrons
  • New photochemical processes enabled by hot electrons
  • Development and application of new theoretical methods for modeling hot electron chemistry
  • Mechanistic aspects of the syntheses and characteristics of materials for hot electron generation and harvesting

In conceiving this Virtual Special Issue, the Guest Editors were inspired by some recent exciting innovations and discoveries, including:

  • Plasmonically generated hot electrons inducing new reaction pathways and modifying reaction selectivity
  • Energetically unfavorable reactions being driven by carrier photoexcitation
  • Strategies for resolving thermal and non-thermal effects in hot electron chemistry
  • Selective activation of adsorbate vibrational modes by photogenerated hot electrons
  • Recent experimental advances in studying ultrafast dynamics of hot-electron-mediated energy transfer

Read Articles on Hot Electrons in ACS Journals

Submission Instructions

The review process for all submissions for this Virtual Special Issue will be handled by The Journal of Physical Chemistry C’s Senior Editors Stephan Link and Gregory Hartland.

To ensure an unbiased peer-review process, the journal asks that you do not indicate within your manuscript that the submission is intended for the Virtual Special Issue. If you do, your manuscript will be returned for correction. Instead, when you submit your manuscript, please indicate this on your cover letter and note what part and section you feel will be the best fit. You can find a complete list of sections and other important information for authors in The Journal of Physical Chemistry C’s Author Guidelines.

As with all submissions to The Journal of Physical Chemistry C, your manuscript should represent a rigorous scientific report of original research, as it will be peer-reviewed as a regular article. Manuscripts are expected to provide new physical insight and/or present new theoretical or computational methods of broad interest.

Information for Authors

Submit Your Manuscript

If you are unsure if your research is within the Virtual Special Issue’s scope or have other questions about submitting a manuscript to this Virtual Special Issue, please email The Journal of Physical Chemistry C Deputy Editor Gregory Hartland’s office at hartland-office@jpc.acs.org.

Call for Papers: AI for Synthetic Biology

Synthetic biology has been successfully used to design biological systems with new and improved functions. However, due to the complexity of biological systems, performing synthetic biology in a quantitative and predictive manner still remains a challenge. In recent years, artificial intelligence (AI) and machine learning (ML) that allow computers to learn from experience has emerged as a potentially powerful tool to address this challenge.

A new Virtual Special Issue from ACS Synthetic Biology will focus on this dynamic topic, including contributions that develop and apply AI and ML tools for synthetic biology applications. The issue will be led by Editor-in-Chief Huimin Zhao with Guest Editors Hector Garcia-Martin and Stanislav Mazurenko.

Relevant topics include:

  • AI/ML algorithms relevant to synthetic biology
  • AI/ML-guided peptide, protein, and antibody engineering
  • AI/ML-guided metabolic engineering
  • AI/ML for plant, microbial, and mammalian synthetic biology
  • AI/ML for bioprocess development
  • AI/ML for systems biology

Author Instructions:

To submit your manuscript, please visit the ACS Synthetic Biology website. Please follow the normal procedures for manuscript submission, and when in the ACS Paragon Plus submission site, select the special issue of “AI for Synthetic Biology.” All manuscripts will undergo the normal peer review process. For additional submission instructions, please see the ACS Synthetic Biology Author Guidelines.

The deadline for submissions is March 31, 2023.

Learn More About How to Submit

The 2022 Open Call for ACS Sustainable Chemistry & Engineering Editorial Advisory Board and Early Career Board Members

ACS Sustainable Chemistry & Engineering is pleased to announce the open call for membership applications to its 2023 Early Career and Editorial Advisory Boards.  Board members of ACS Sustainable Chemistry & Engineering represent researchers at all stages of their careers and play a key role with input and advice to the Journal. Duties include guiding the Journal in the development of its diversity plan and expanding our editorial content.  The Early Career Board augments the Editorial Advisory Board and provides researchers a mechanism for Board membership that avoids competing with senior colleagues for membership opportunities. In addition to full participation in Board activities by Early Career Board members, the Journal’s editors and advisors actively mentor each Early Career Board member. The Journal continues to seek Editorial Advisory Board and Early Career Board members who will be actively involved in these activities.  The Editors invite all interested and eligible researchers to apply.

Two years ago, ACS Sustainable Chemistry & Engineering took the innovative step of announcing their first open call for membership; the response was very enthusiastic, and many more applicants were received than could be accepted.  We have created an open self-nominating process for Board membership.  Applications to be part of the Editorial Advisory Board and our Early Career Board are available below and are due by 27 November, 2022

Submit Your Application

Applicants should self-nominate and are encouraged, but are not required, to include up to two (2) letters of support.  The applicants’ responses to the open-ended questions (below) and their ability to represent the topical areas covered and geographic areas represented by the journal’s authors, reviewers, and readers will be assessed.  Board members should also drive the Journal into new areas of research and represent geographical regions that the journal aspires to publish more content from.  The application review committee will keep diversity and inclusiveness in mind as it seeks to fulfill these criteria.  The selected board members will be invited to join the Board immediately after selection in Fall 2022 and will serve terms ending in 2024.

Application

Please submit your applications by 27 November, 2022. Additional details are provided below. If you have questions, please send them to Award.ACSSustainable@acs.org. We hope that many of you will choose to apply.

Early Career Board Eligibility: Faculty members within 10 years or less of their initial academic appointment and industrial and other non-academic scientists within 10 years or less from their last professional training (terminal degree or postdoc).  If you have taken career breaks to accommodate personal circumstances such as caring responsibilities or health-related needs that affects your eligibility under the 10-year timeline described above, please email Award.ACSSustainable@acs.org to discuss extension of the eligibility period.

Editorial Advisory Board Eligibility: Researchers and those active in the development and delivery of Green Chemistry, Green Engineering and the sustainability of the chemical enterprise.

For both Boards: A concise statement of no more than 1,000 words addressing these open-ended questions:

  1. What do you consider to be the Journal’s strengths? What are its challenges and opportunities?
  2. Based on your perception of the strengths and challenges, what is your sense of new directions and topical areas for the ACS SCE Journal, consistent with its mission and scope?
  3. What would you contribute to movement in such directions?
  4. Noting the Journal is asking members of the Journal Editorial Boards to contribute to the development of journal front matter material, in which of these areas might you contribute? What abilities and perspectives do you bring to this effort?
  5. Noting that the Journal is asking board members to assist in developing a diversity plan, what abilities and perspectives do you bring to this effort?
  6. Is there any other unique perspective you bring that we should be aware of?

Submit Your Application by 27 November