Educator Archives - ACS Axial | ACS Publications

ACS Survey Shows Changing Attitudes Towards Open Access Publishing

Each year, ACS conducts a survey of its authors, readers, and reviewers to gauge their attitudes towards open access (OA), and to gather feedback on their experiences. In 2021, this survey ran between July and August and gathered over 1,400 responses from around the world, with subsequent focus groups at the 2022 ACS Spring Meeting providing additional context for many of the points raised in the survey.

Recent years have seen a steady growth of researchers publishing their work in open access journals. This is driven by a mix of factors including the desire for greater visibility, a personal agreement with the principles behind the OA movement, and institutional and/or research funder requirements. In many cases, these expectations are backed up by initiatives such as Read + Publish Agreements, and survey respondents feel that this kind of institutional support will be instrumental in continuing the growth of OA in the chemical sciences.

The survey also showed that more than two-thirds of respondents believe that publishing open access will be important within the next five years, with a preference for publishing in journals that include a mix of subscription-based and open access content in order to reach the best audience for their work. These ‘hybrid’ titles include ACS’ portfolio of more than 60 transformative journals, with their commitment to publishing an increasing proportion of open access content with the goal of eventually transitioning to 100% open access.

A free report is available discussing some of the survey’s findings in greater detail – visit the ACS Open Science website for more information.


The Molecular Nature of Touch

The Spring 2022 National American Chemical Society (ACS) meeting held in San Diego, California, was a hybrid meeting that featured a wide range of science topics. The offerings showcased the vast diversity of the chemical sciences and the increasingly integrated nature of the projects. 

Believe it or not, using touch, people can distinguish between texture differences down to one atom. Charles Dhong’s group at the University of Delaware has been investigating the human ability to distinguish different textures by touch. Swapping out one element in a polymer can change the way the molecules line up in the bulk sample, and in polymers, that changes their crystallinity: how orderly they pack together.

These chemical differences can be distinguished using your fingertip in the same way you can feel the difference on the surface of a glass before and after you put it in the dishwasher. Before it goes in, the surface is smooth, and your fingers move over the surface easily. Afterward, it feels rougher, and your fingers don’t move as easily. The same thing happens when atoms are substituted into a polymer and the polymer crystallinity is disturbed: when a polymer is more crystalline, it feels smooth; less crystalline, it feels rough. Dhong’s group is looking at how people perceive differences in touch and how small the differences can be before they become undetectable. Dhong foresses that the applications of this are varied, from better devices, such as braille displays, to providing additional sensory information, to surgeons during remote procedures.

News briefing from the meeting:

Video media briefing:

Recent American Chemical Society publications on this topic:

Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device
Sulbin Park, Byeong-Gwang Shin, Seongwan Jang, and Kyeongwoon Chung*

Silk Fibroin Nanocomposites with Indium Tin Oxide toward Sustainable Capacitive Touch Sensing Applications
Ander Reizabal*, Nelson Castro, Nelson Pereira, Carlos M. Costa*, Leyre Pérez, José Luis Vilas-Vilela, and Senentxu Lanceros-Méndez

Virtual Environment for Studying the Docking Interactions of Rigid Biomolecules with Haptics
Georgios Iakovou, Steven Hayward*, and Stephen D. Laycock

Haptic-Assisted Interactive Molecular Docking Incorporating Receptor Flexibility
Nick Matthews, Akio Kitao, Stephen Laycock*, and Steven Hayward*


Recent publications by this group:

Interfacial Drawing: Roll-to-Roll Coating of Semiconducting Polymer and Barrier Films onto Plastic Foils and Textiles
Rory Runser, Samuel E. Root, Derick E. Ober, Kartik Choudhary, Alex X. Chen, Charles Dhong, Armando D. Urbina, and Darren J. Lipomi*

Optics-Free, Non-Contact Measurements of Fluids, Bubbles, and Particles in Microchannels Using Metallic Nano-Islands on Graphene
Charles Dhong, Samuel J. Edmunds, Julian Ramírez, Laure V. Kayser, Fang Chen, Jesse V. Jokerst, and Darren J. Lipomi*


Blockchain: A Solution for Information Overload in the Fight Against COVID-19

GISAID, a public-private partnership database, collects genome sequences related to influenza and most recently COVID-19.1 As of June 1, 2022, more than 11 million genome sequences have been submitted to It by more than 200 countries, proving that the fight against the COVID-19 pandemic has become a worldwide effort.

Having all this information freely available has allowed for the production of innovative vaccines and viral drugs, but could all this information be too much? Pietro Cozzini and Federica Agosta, professors at the University of Parma, think it might be. “While it is a great idea to collect all the data related to COVID-19 in a unique repository, the problem is that with such huge amounts of data, we are not able to check its quality,” says Cozzini.


Federica Agosta Molecular Modelling Lab, Food & Drug Department, University of Parma, Parco Area delle Scienze, 17/A, 43124 Parma, Italy


Pietro Cozzini Molecular Modelling Lab, Food & Drug Department, University of Parma, Parco Area delle Scienze, 17/A, 43124 Parma, Italy

The key to fighting viral infections is identifying their DNA and using it to outsmart new variants. The mRNA vaccines that have become essential in the fight against COVID-19 can be easily modified. When the DNA for a new variant is identified, the mRNA can be re-engineered to respond to it. “The problem is that the quality of data is not the same from all nations,” says Cozzini. For example, not all the sequences uploaded for the same virus are the same length, some range in size from under 100 amino acids to more than 50,000. This has led to issues down the line in identifying mutations.

Cozzini and Agosta suggest that Blockchain might be a solution to this problem.2 Blockchain, an electronic database of information that is transparent and unchangeable, uses a set of rules that allow a computer to check data quality. Most frequently associated with financial databases, Blockchain has also found utility in the pharmaceutical3 and agricultural fields,4 tracking food and chemicals through the supply chain.

Blockchain screens for data quality based on a set of parameters, and if the data pass, they become permanently available for viewing. So how is this different from the GISAID database as it is currently used? The answer is in the rules that would be set and that must be adhered to add to the database. All national health organizations would have to input their data in the same way and in the same format. “If the data isn’t the same, then it is difficult to do a decent analysis of the distribution of the variants,” says Agosta. Currently, Cozzini and Agosta are working with scientists from health organizations around the world to help draft the rules that would create a COVID-19 Blockchain.

Blockchain technology is here to stay and its adoption across industries, from the pharmaceutical industry and agriculture to artwork and video games, means constant improvement. In the fight to stay ahead of COVID-19 mutations, Blockchain may soon be one more weapon in the arsenal.


(1) GISAID – Initiative. (accessed 2022-06-02).

(2) Cozzini, P.; Agosta, F.; Dolcetti, G.; Righi, G. How a Blockchain Approach Can Improve Data Reliability in the COVID-19 Pandemic. ACS Med. Chem. Lett. 2022, 13 (4), 517–519.

(3) How to Use Blockchain in the Pharmaceutical Industry. Intellectsoft Blog, 2021.

(4) Bank, M.S.; Duarte, C.M.; Sonne, C. Intergovernmental Panel on Blue Foods in Support of Sustainable Development and Nutritional Security. Environ. Sci. Technol. 2022, 56 (9), 5302–5305. 

Protecting eggs (and heads): A new use for hydrogel?

This article is based on this recent paper published in ACS Applied Materials & Interfaces, “How a Gel Can Protect an Egg: A Flexible Hydrogel with Embedded Starch Particles Shields Fragile Objects Against Impact”.

Read the full paper here

Hydrogels are networks of polymer chains that are swollen in water. In recent years, research has focused on making hydrogels that are flexible and bendable. Could this pave the way for an inexpensive, biodegradable packaging material? New research published by ACS explores the possibilities.

Food waste and excess, unsustainable packaging are major environmental issues, and there is a move towards creating novel solutions that could overcome them. In the department of Chemical and Biomolecular Engineering at the University of Maryland, Ganesh and colleagues have contributed to the field of hydrogels by creating gels via either physical or chemical cross-linking, and with the addition of various particulates. A hydrogel is a three-dimensional polymer network that can absorb and retain water. Collagen and gelatin are examples of hydrogels found in nature, and they are already used in many medical settings, but new research is focussed on creating hydrogels with more diverse applications.

The aim of this study was to develop a flexible gel that could be wrapped around brittle or fragile objects to protect against impact. Their report published in ACS Applied Materials & Interfaces explains that none of the bare gels were protective, and the addition of nanoparticles such as iron oxide or silica made no difference. However, the addition of starch granules to a gelatin hydrogel enhanced the protective abilities – with a 25% reduction in peak impact force compared to the same gel without the starch.1 In the study, fragile items such as eggs and blueberries stayed intact when wrapped in a gel infused with starch, even when landing on a hard surface, or if something was dropped on them from above. Overall, gels made with 10% gelatin and 10–20% starch were ideal in terms of their flexibility and impact absorption.

Alongside this impact reduction, the coefficient of restitution – the ratio of the final to initial relative speed between two objects after they collide – was also lowered by the presence of starch. In practical terms, this means that a ball would bounce less on a starch-bearing gel than on a bare gel or a hard surface.

This research may prove instrumental in designing protective coatings for fragile objects –particularly when looking for inexpensive, biodegradable alternatives to traditional bubble wrap and packaging peanuts. There may also be future applications across diverse sectors such as sports and defense, where protecting eggs from impact could be scaled up to protecting heads.

Watch the video around this research created by the ACS Press Team:

Read the full press release on

Read the original article from ACS Applied Materials & Interfaces

Further reading on this topic

Article icon

Increased Hydrogel Swelling Induced by Absorption of Small Molecules
Changwoo Nam, Tawanda J. Zimudzi, Geoffrey M. Geise, and Michael A. Hickner
DOI: 10.1021/acsami.6b02069

Article icon

Super Tough, Ultrastretchable Hydrogel with Multistimuli Responsiveness
Meng-Meng Song, Ya-Min Wang, Bing Wang, Xiang-Yong Liang, Zhi-Yi Chang, Bang-Jing Li, and Sheng Zhang

Article icon

Impact of Elastin-like Protein Temperature Transition on PEG-ELP Hybrid Hydrogel Properties
Edi Meco and Kyle J. Lampe
DOI: 10.1021/acs.biomac.9b00113

Introducing Dr. Elena Galoppini, Deputy Editor of ACS Applied Optical Materials

Elena Galoppini graduated with a Laurea in Chimica (MSc) from the Università di Pisa, Italy, in 1989 and a Ph.D. in Chemistry from the University of Chicago in 1994, with Professor Philip E. Eaton. Following a two-year Postdoctoral Associate appointment at the University of Texas Austin with Professor Marye Anne Fox, in 1996 she began her independent research career at Rutgers University-Newark, where she is currently Distinguished Professor.

Dr. Elena Galoppini

At Rutgers, Prof. Galoppini has served as the Graduate Program Coordinator of the Department of Chemistry from 2016-2019, and over the years she has been Visiting Professor at several institutions including the Royal Institute of Technology in Stockholm in Sweden and the University of Padova in Italy. In 2019 she was the recipient of a Rutgers Board of Trustees Award for Excellence in Research.

Prof. Galoppini has served on the Advisory Editorial Board of Langmuir from 2007-2010 and is the author of 100 peer-reviewed articles in fundamental and applied research areas, with a primary focus on synthesis of functional bridging units for binding organic chromophores to inorganic semiconductors.

I recently spoke with Dr. Galoppini to learn more about her plans for ACS Applied Optical Materials.

Welcome to the ACS Publications Team, Dr. Galoppini, and congratulations on your new role as the Founding Deputy Editor of ACS Applied Optical Materials. Can you tell us a bit about what drew you to accepting a leadership position with this new journal?

Thank you. Firstly, I want to say that I am honored to be entrusted with this responsibility, and that I am absolutely excited to be the Founding Deputy Editor of ACS Applied Optical Materials, one of the two new journals added in 2022 to the ACS Applied Materials portfolio.

I was drawn to accepting this position because it is an opportunity to contribute in a creative way to the field of optical materials, and in a manner that is entirely new to me. After many years in academic research, the editorial role is a new direction and poses a fresh challenge.  In fact, I feel the same energy and sense of possibilities as when I was a new Assistant Professor, and entered my empty laboratory space for the first time. 

What are you most excited about as the journal opens for submissions?

It is exciting to be part of a perfectly timed initiative by ACS that meets the growing interest in optical materials. In the past five years, publications in this area have sharply increased. ACS Applied Optical Materials, with a focus on applications, will complement other ACS publications that are covering more fundamental aspects of the interactions between light and matter.  

Second, the journal is part of the ACS Applied Materials portfolio, a family of journals encompassing the areas of interfaces, energy, nanoscience, biomaterials, polymers and electronics, and that this year has been expanded to include engineering and optical materials. There is great collegiality between this group of Deputy Editors, and for this reason I anticipate excellent opportunities for future collaborations on Special Issues, Editorials, and other initiatives that are interdisciplinary and cross-cutting the areas of interest among the ACS Applied Materials journals.  

What kind of research reports are of particular interest to you? Are there specific challenges you hope articles in this journal can seek to address?

The field of optical materials is broad, and we welcome high quality, interdisciplinary manuscripts reporting research on emerging applications, and that provide mechanistic insight on optical devices functions.  From a personal perspective, I find fascinating the role of interfaces and how they can influence and control the properties and functions of optical materials and devices.  

A specific challenge that I hope the journal can address will be to identify emerging areas of interest in the multifaceted discipline of optical materials, and then highlight them in the journal.  To this end, it will be essential the input of the Associate Editors and of the Advisory Editorial Board members.  Since they come from different scientific backgrounds, offer complementary expertise, and represent different geographical regions, they will be able to address this challenge from a variety of perspectives.

Do you have any advice for authors seeking to publish their papers with you?

My first suggestion to an author is to look at the journal scope and, as issues will be published following the launch, read the articles and become familiar with the type of research published in ACS Applied Optical Materials. This will ensure that the work that you seek to publish in ACS Applied Optical Materials fits within the scope of the journal.

Secondly, I recommend making a clear connection to how the research presented in your manuscript can advance applications, demonstrate new functions, or be integrated in a device. ACS Applied Optical Materials, as the rest of the ACS Applied Materials portfolio, focuses on high quality research of an applied nature. It is not necessary to directly demonstrate an application, but you should emphasize this connection and put your work in this kind of context.

What opportunities in your field excite you the most?

One of the most exciting opportunities has been collaborating with colleagues who come from completely different scientific backgrounds from mine, and are outside my field. I am at core an organic chemist, and the most rewarding collaborations have been with physicists, physical chemists, and theoreticians.  Everybody learns something new, and together we expand and develop new ideas in a manner that would never have been possible.

What do you think are the non-scientific challenges facing your field?

In my experience, science is generally poorly communicated to the public, and conveying the positive impact of chemistry on society is an enduring challenge.  For instance, undergraduate students taking their first organic chemistry course tend to consider it an obstacle, and anticipate chemistry to be a dry and abstract subject. Fortunately, in academia we have the opportunity to change this perception. We can help students realize that chemistry studies stimulate new ways of thinking, illustrate how chemistry can benefit society, and involve undergraduates in research.

A second challenge is that pursuing a research active academic career has become more complex and stressful.  Applying for funding has turned into an increasingly time consuming and bureaucratic process, and faculty can become overwhelmed with other tasks that have little to do with science. This trend may discourage some talented graduate students and postdocs from pursuing an academic career. 

Apart from materials chemistry, what are you passionate about?

My enthusiasm for working with graduate, undergraduate students and postdocs, and mentoring them in a research setting has never diminished. Seeing young researchers grow scientifically and personally over the years, and then start their own independent career is one of the greatest satisfactions of working in academia.  In my opinion, this one of the greatest contributions a scientist can make. Not to mention that working with young people keeps you young … well, at least young at heart!

About the Journal

ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical, including simulation and modeling, research in optical materials, complementing the ACS Applied Materials portfolio. With a focus on innovative applications, ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics, Macromolecules, The Journal of Physical Chemistry C, ACS Nano and Nano Letters.

Visit the journal website to learn more about the scope, to view the author guidelines or to submit your manuscript. Sign up to receive journal e-alerts to receive the first Issue straight to your inbox.

View selected publications from Dr. Galoppini



Low-Cost Water Filters with Built-in Lead Indicator

The Spring 2022 National American Chemical Society (ACS) meeting held in San Diego, California, was a hybrid meeting that featured a wide range of science topics. The offerings showcased the vast diversity of the chemical sciences and the increasingly integrated nature of the projects. This piece focusses on the a filtration device that can detect lead in drinking water. 

Inspired by media coverage of the water contamination in Michigan, high school teacher Rebecca Bushway challenged her Advanced Topics in Chemistry class to design and develop a filtration device that would indicate when water was contaminated with lead. Using the displacement reaction between calcium phosphate and lead ions to trap the lead and another reaction between potassium iodide and lead ions as a color indicator, her class designed and developed a 3D-printed water filter that attaches to most water faucets.

In the first reaction, the lead replaces the calcium to form a highly insoluble solid, and when the filter can no longer absorb lead, the semipermeable membrane containing the potassium iodide turns bright yellow. Her team 3D printed the water filter and incorporated physics, engineering, marketing, art, and social justice in this highly interdisciplinary project. According to Bushway, “The device costs less than a $1 to make,” but the experience of helping someone with science is priceless.

News briefing from the meeting

Video media briefing:

Related articles on this topic from ACS Publications

Assembling and Using a Simple, Low-Cost, Vacuum Filtration Apparatus That Operates without Electricity or Running Water
Fengxiu Zhang, Yiwei Hu, Yaling Jia, Yonghua Lu, and Guangxian Zhang
DOI: 10.1021/acs.jchemed.5b00997

A Portable, Low-Cost, LED Fluorimeter for Middle School, High School, and Undergraduate Chemistry Labs
Benjamin T. Wigton, Balwant S. Chohan, Cole McDonald, Matt Johnson, Doug Schunk, Rod Kreuter, and Dan Sykes
DOI: 10.1021/ed200090r

An Environmentally Friendly, Cost-Effective Determination of Lead in Environmental Samples Using Anodic Stripping Voltammetry
Michael J. Goldcamp, Melinda N. Underwood, Joshua L. Cloud, Sean Harshman, and Kevin Ashley
DOI: 10.1021/ed085p976

Low-Cost 3D-Printed Polarimeter
Paweł Bernard and James D. Mendez
DOI: 10.1021/acs.jchemed.9b01083

18 ACS journals to pilot Contributor Roles Taxonomy

ACS Publications is embarking on a pilot of the Contributor Roles Taxonomy (CRediT) program in 18 of our research journals. CRediT is a high-level taxonomy used to identify and acknowledge the roles played by contributors to scientific scholarly output.​ As of February 2022, the National Information Standards Organization (NISO) formalized CRediT as an ANSI/NISO standard.​

CRediT encourages open science and promotes increased transparency in our published content.​ It assists researchers in easy identification of potential collaborators, it assists funders in identifying who played what part in specific research outputs, and in tracking the various outputs from grantees, and it assists editors and funders in finding specific peer reviewers for articles or grants.

Read on to find out more about the ACS Publications pilot with CRediT:

When will the CRediT pilot run?

The pilot began on June 14, 2022 and will run through September. 

What journals will have the option for CRediT? 

  • Accounts of Chemical Research​​*
  • ACS Bio & Med Chem Au*
  • ACS Chemical Health & Safety​​*
  • ACS Engineering Au*
  • ACS Environmental Au*
  • ACS ES&T Engineering​​
  • ACS ES&T Water​​*
  • ACS Materials Au*
  • ACS Materials Letters​​
  • ACS Macro Letters​​*
  • ACS Measurement Science Au*
  • ACS Nanoscience Au*
  • ACS Organic & Inorganic Au*
  • ACS Physical Chemistry Au*
  • ACS Polymers Au*
  • Chemical Research in Toxicology​​
  • Chemical Reviews ​​
  • JACS Au​​

*These journals will require authors to include a degree of contribution (lead, equal, or supporting) as part of CRediT.

Will CRediT be mandatory to enter upon submission to these journals?

CRediT will be made optional for authors upon original submission and revision to these 18 journals. ​​

Who will be responsible for providing CRediT information? 

The submitting author will be responsible for providing CRediT information for all authors.​​ CRediT information can also be updated post-acceptance through ACS’s authorship/CRediT change process, prior to web publication.

What if I utilize ACS Manuscript Transfer, will CRediT information transfer?

At this time, information will not transfer if the manuscript is transferred to a pilot or non-pilot journal.​​

How many contributor roles are there? 

CRediT includes the 14 roles listed here: 

  • Conceptualization​
  • Data Curation​
  • Formal Analysis​
  • Funding Acquisition​
  • Investigation​
  • Methodology​
  • Project Administration​
  • Resources​
  • Software​
  • Supervision​
  • Validation​
  • Visualization​
  • Writing – original​ draft
  • Writing – review & editing.​

A full description of each role is available here

Where do submitting authors provide CRediT information?

Submitting authors can provide CRediT information when submitting an original or a revised manuscript to a pilot journal via ACS Paragon Plus. Certain journals in the pilot will require the submitting author to include the degree of contribution. 

Where will CRediT be displayed on the published article?

It will be displayed at the end of the article in the “Author Contributions” section of both the HTML and PDF versions of the article. 

What will happen to contribution notes that are included in the manuscript file?

During the pilot, contribution notes included by the authors in the manuscript file will be published in the “Author Contributions” section before official CRediT information.

What if I’m interested in CRediT but the journal I submitted to is not part of the pilot?

Authors still have the ability to include their own contribution note in the manuscript file at the time of original submission or revision. At this time, the contribution note will not be officially counted as part of the CRediT pilot but will be published as provided by the authors.

What will happen at the end of the ACS Publications CRediT pilot in September? 

We will assess author participation, feedback, and potential to roll this out to additional ACS journals. 

Please read more about CRediT in this Scholarly Kitchen interview with the three Co-Chairs of the NISO Contributor Roles Taxonomy Working Group, Liz Allen, Simon Kerridge, and Alison McGonagle-O’Connell: Next Steps for CRediT – An Interview with the Co-Chairs.

New ACS Transformative Agreement marks two important firsts

Academic and research institutions across the state of California are among the nation’s highest-publishing organizations, producing hundreds of world class research articles in chemistry every year – and under the newly-announced Read + Publish Agreement, many of these researchers are now able to publish in ACS’ full range of open access and hybrid journals with additional support for publishing costs.

This agreement marks two ‘firsts’: not only is it the first ever California-wide transformative agreement with any publisher, but also the first ACS Read + Publish Agreement which includes multiple consortia. In total, the new agreement covers almost 60 institutions and thousands of researchers, granting both full reading access and affordable open access publishing across the full portfolio of 75+ ACS journals.

The three consortia included in the agreement – California State University system, the Statewide California Electronic Library Consortia (SCELC), and the University of California system – collaborated with ACS to represent the interests of their diverse community of researchers, to make even more of their research and scholarship available to the world, and to find an approach that guarantees an affordable and sustainable route to open access.

This new type of Read + Publish Agreement is unique, in that it engages funder support for open access in alignment with the partnership between the institutes and publisher. As the scholarly publishing industry transitions toward an open access future, innovations like this partnership will be crucial to ensuring that all educational institutions and their researchers can participate in the full benefits of open access publication.

“ACS is very excited about this new agreement, as it takes the workflows behind read and publish deals to the next level,” says Sybille Geisenheyner, Director of Open Science Strategy and Licensing at ACS. “As we embark upon this partnership, we invite funders to engage in this collaboration to support this transformation.”

The agreement is rolling out in two phases. Until early July 2022, affiliated authors will benefit from discounted open access publishing charges, making publication in all ACS journals even more affordable. The second phase, running through the end of 2025, will introduce a new workflow which will help authors make better use of the opportunities provided by their research funder. Authors will also have the option of publishing under a Read + Publish Agreement with their institution if no other funds are available.

ACS is a firm supporter of open science and has invested in programs and technology to make open access as widely available as possible. This includes a wide range of Read + Publish Agreements, which now cover more than 540 institutions in over 25 countries, including institutions which produce the most highly cited chemical research. These are intended to be transformative agreements: a sustainable way for researchers to publish in journals that are the best fit for their research, while increasing the proportion of global research that is freely available to readers with no barriers to access. Institutions and consortia maintain reading access to key parts of the literature, while also providing their authors with full article publishing charge support. Additionally, ACS also publishes more than 60 Transformative Journals: titles which include both subscription access and open access articles, which have made a long-term commitment to becoming fully open access.

“At ACS, we are committed to expanding our partnerships and innovating new ways to advance open access publication in chemistry,” says James Milne, Ph.D., President, ACS Publications Division. “I am confident that institutions around the world will see this collaboration as a prime example of creative thinking supporting the advancement of open science, for the benefit of chemistry and the world.”

More information on this announcement is available in the ACS News Room, and further details about ACS Read + Publish Agreements are available on the ACS Open Science website.

Another Reason to Love Coffee

The Spring 2022 National American Chemical Society (ACS) meeting held in San Diego, California, was a hybrid meeting that featured a wide range of science topics. The offerings showcased the vast diversity of the chemical sciences and the increasingly integrated nature of the projects. This piece focusses on the potential of used coffee grounds to be used in sensitive electrodes capable, one day, of detecting brain waves. 

Coffee grounds are a major component of biowaste. Making porous carbon suitable for electrochemical sensing is a useful way to recycle these castoffs from our morning brews. Brain activity is fast and can be measured using fast-scan cyclic voltammetry, an electrochemical technique that can measure activity as fast as 100 milliseconds. The typical electrodes for neuroscience sensing are fine carbon rods that are hard to make and require harsh chemicals. Recent observations show that porous carbon—carbon that has unique geometric pores—could increase sensing speeds. The Ross Group at the University of Cincinnati turned to their love of coffee as a source of porous carbon. Coffee beans are a good carbon source. They are rich in cellulose and hemicellulose. After the members of the Ross Group enjoy their daily brew, they dry their coffee grounds, treat them with base (potassium hydroxide) to create porous carbon, and stabilize the porous carbon by drying it under nitrogen. The team then uses the porous carbon slurry to coat traditional electrodes. These coated electrodes trap analytes, such as dopamine, in holes in the surface coating. The trapped analytes interact longer with the electrode, which facilitates faster measurement of brain activity. Although principal investigator Ashley Ross admits that use of these electrodes in vivo is still a long way off, the work is promising, and her team has enjoyed the challenge of drinking enough coffee to keep them in starting materials.

News briefing from the meeting:

Video media briefing:

Recent American Chemical Society publications on this topic:

Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors
Young Soo Yun, Min Hong Park, Sung Ju Hong, Min Eui Lee, Yung Woo Park, and Hyoung-Joon Jin
DOI: 10.1021/am5081919

Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications
Dong Young Chung, Yoon Jun Son, Ji Mun Yoo, Jin Soo Kang, Chi-Yeong Ahn, Subin Park, and Yung-Eun Sung
DOI: 10.1021/acsami.7b13799

Renewable Coffee Waste-Derived Porous Carbons as Anode Materials for High-Performance Sustainable Microbial Fuel Cells
Yu-Hsuan Hung, Tzu-Yin Liu, and Han-Yi Chen
DOI: 10.1021/acssuschemeng.9b02405

Biomass-Derived Carbon for Electrode Fabrication in Microbial Fuel Cells: A Review
Wei Yang and Shaowei Chen
DOI: 10.1021/acs.iecr.0c00041

Coffee-Ground-Derived Nanoporous Carbon Anodes for Sodium-Ion Batteries with High Rate Performance and Cyclic Stability
Peng-Hsuan Chiang, Shih-Fu Liu, Yu-Hsuan Hung, Hsin Tseng, Chun-Han Guo, and Han-Yi Chen
DOI: 10.1021/acs.energyfuels.0c01105


Recent publications by this group:

Metal Nanoparticle Modified Carbon-Fiber Microelectrodes Enhance Adenosine Triphosphate Surface Interactions with Fast-Scan Cyclic Voltammetry
Yuxin Li, Alexandra L. Keller, Michael T. Cryan, and Ashley E. Ross
DOI: 10.1021/acsmeasuresciau.1c00026

Real-Time Detection of Melatonin Using Fast-Scan Cyclic Voltammetry
Austin L. Hensley, Adam R. Colley, and Ashley E. Ross
DOI: 10.1021/acs.analchem.8b01976

Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection
Blaise J. Ostertag, Michael T. Cryan, Joel M. Serrano, Guoliang Liu, and Ashley E. Ross
DOI: 10.1021/acsanm.1c03933

An easier way to submit ChemRxiv research to peer-reviewed journals

Direct Journal Transfer is a free feature of ChemRxiv that helps authors submit their posted preprints from ChemRxiv to established journals for editorial consideration and peer review. This feature, available through the ChemRxiv author dashboard, enables easy direct submission to journals published by the American Chemical Society (ACS), the Chinese Chemical Society (CCS), the Royal Society of Chemistry (RSC), the German Chemical Society (GDCh), and the Beilstein-Institut. 

We are working to expand this program further, with journals published by Frontiers soon to be added. You can now stay up to date on all the available destination journals on our Direct Journal Transfer webpage.

Chemrxiv direct journal transfer

Recent preprints that went on to be published 

Here are some recent preprints that went on to be published in top peer-reviewed journals such as Angewandte Chemie, JACS, and PNAS. Thank you to all the authors and readers who make ChemRxiv the premier preprint server for the global chemistry community!

Chiral Arene Ligand as Stereocontroller for Asymmetric C-H Activation
By Hao Liang, Weicong Guo, Junxuan Li, Jijun Jiang, Jun Wang
Now published in Angewandte Chemie 

Blatter Radicals as Bipolar Materials for Symmetric Redox-Flow Batteries
By Jelte Steen, Jules Nuismer, Vytautas Eiva, Albert Wiglema, Nicolas Daub, Johan Hjelm, Edwin Otten
Now published in Journal of the American Chemical Society 

Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics
By Arif Ullah, Pavlo O. Dral
Now published in Nature Communications 

Surface NMR Using Quantum Sensors in Diamond
By Kristina Liu, Alex Henning, Markus W. Heindl, Robin Allert, Johannes D. Bartl, Ian D. Sharp, Roberto Rizzato, Dominik Benjamin Bucher
Now published in Proceedings of the National Academy of Sciences