REDUCED TRANSCRIPTOMIC APPROACH IN CHEMICAL TOXICOLOGY

Full dose range testing of hundreds of chemicals or mixtures can be performed with human cells or zebrafish embryos by a reduced transcriptomic approach. Points of departure of genes and pathways are used for potency ranking and to classify chemicals by disrupted biological pathways.

STEP 1
INPUT: DOSE-RESPONSE MODELING OF GENES

- **U-shaped**
 - POD \(\text{gene-1} \)
 - Fold change
 - Concentration

- **Sigmoid**
 - POD \(\text{gene-2} \)
 - Fold change
 - Concentration

- **Linear**
 - POD \(\text{gene-3} \)
 - Fold change
 - Concentration

STEP 2
PATHWAY MAPPING

- **PATHWAY-1**
 - POD \(\text{path-1} \)
 - Gene-1
 - Gene-2

- **PATHWAY-2**
 - POD \(\text{path-2} \)
 - Gene-1
 - Gene-2

- **PATHWAY-x**
 - POD \(\text{path-x} \)

STEP 3
DOSE-DEPENDENCE OF PATHWAY PERTURBATIONS

- **Rank**
- **Path-x**
- **Path-2**
- **Path-1**

STEP 4
CLASSIFICATION

- **CHEMICAL A**
- **CHEMICAL B**
- **CHEMICAL C**
- **CHEMICAL D**
- **CHEMICAL E**
- **CHEMICAL I**
- **CHEMICAL H**
- **CHEMICAL K**

Proportional ranks of POD

STEP 5
RANKING BY POTENCY

Proportional ranks of POD vs. concentrations